|
Expedition-related bibliography
IODP
publications
Scientific Prospectus
Webster, J.M., Yokoyama, Y., and Cotterill, C.,
2009. Great Barrier Reef environmental changes: the last deglacial
sea level rise in the South Pacific: offshore drilling northeast
Australia. IODP Sci. Prosp., 325. doi:10.2204/iodp.sp.325.2009
Preliminary Report
Expedition 325 Scientists, 2010. Great Barrier Reef
environmental changes: the last deglacial sea level rise in the
South Pacific: offshore drilling northeast Australia. IODP
Prel. Rept., 325. doi:10.2204/iodp.pr.325.2010
Scientific Drilling journal
Yokohama, Y., Webster, J.M., Cotterill, C., Braga,
J.C., Jovane, L., Mills, H., Morgan, S., Suzuki, A., and the IODP
Expedition 325 Scientists, 2011. IODP Expedition 325: the Great
Barrier Reef reveals past sea-level, climate, and environmental
changes since the last Ice Age. Sci. Drill., 12:32–45.
doi:10.2204/iodp.sd.12.04.2011
Proceedings volume
Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, 2011. Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.2011
Expedition reports
Expedition 325 Scientists, 2011. Expedition 325
summary. In Webster, J.M., Yokoyama, Y., Cotterill, C.,
and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.101.2011
Expedition 325 Scientists, 2011. Methods.
In Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.102.2011
Expedition 325 Scientists, 2011. Transect HYD-01C.
In Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.103.2011
Expedition 325 Scientists, 2011. Transect HYD-02A.
In Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.104.2011
Expedition 325 Scientists, 2011. Transect RIB-02A.
In Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.105.2011
Expedition 325 Scientists, 2011. Transect NOG-01B.
In Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, Proc. IODP, 325: Tokyo
(Integrated Ocean Drilling Program Management International, Inc.).
doi:10.2204/iodp.proc.325.106.2011
Expedition research results
Pending
Syntheses
Camoin, G., and Webster, J., 2014. Coral reefs and
sea-level change. In Stein, R., Blackman,
D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7):
Earth and Life Processes Discovered from
Subseafloor Environments: A Decade of Science Achieved by the
Integrated Ocean Drilling Program (IODP). R. Stein (Series
Ed.): New York (Elsevier), 395–441. http://dx.doi.org/10.1016/B978-0-444-62617-2.00015-3
Journals/Books
Abbey, E., Webster, J.M., and Beaman, R.J., 2011.
Geomorphology of submerged reefs on the shelf edge of the Great
Barrier Reef: the influence of oscillating Pleistocene sea-levels.
Marine Geology, 288(1–4):61–78. https://doi.org/10.1016/j.margeo.2011.08.006
Abbey, E., Webster, J.M., Braga, J.C., Jacobsen,
G.E., Thorogood, G., Thomas, A.L., Camoin, G., Reimer, P.J., and
Potts, D.C., 2013. Deglacial mesophotic reef demise on the Great
Barrier Reef. Palaeogeography, Palaeoclimatology, Palaeoecology,
392:473–494. https://doi.org/10.1016/j.palaeo.2013.09.032
Abbey, E.A., 2011. The effects of late-Pleistocene
sea-level and environmental change on submerged fossil reefs on the
Great Barrier Reef and Tahiti [PhD dissertation]. University of
Sydney, Australia.
Akhtar, A.A., Cruger Ahm, A.-S., and Higgins, J.A.,
2024. Geochemical fingerprints of early diagenesis in shallow-water
marine carbonates: insights from paired δ44/40Ca and
δ26Mg values. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2024.08.002
Braga, J.C., Puga-Bernabéu, Á., Heindel, K.,
Patterson, M.A., Birgel, D., Peckmann, J., Sánchez-Almazo, I.M.,
Webster, J.M., Yokoyama, Y., and Riding, R., 2019. Microbialites in
last glacial maximum and deglacial reefs of the Great Barrier Reef
(IODP Expedition 325, NE Australia). Palaeogeography,
Palaeoclimatology, Palaeoecology, 514:1–17. https://doi.org/10.1016/j.palaeo.2018.10.007
Brenner, L.D., 2017. Paleoceanographic-proxy
development in Scleractinia (stony corals) throughout the Pacific
Ocean: exploring the variable utility of stable isotopes and trace
metals in oceanographic reconstructions [PhD dissertation].
Columbia University, Columbia, NY.
https://www.proquest.com/docview/1929236313/E6F9E73636C144E1PQ/39?accountid=7082
Brenner, L.D., Linsley, B.K., and Potts, D.C.,
2017. A modern Sr/Ca-δ18O-sea surface temperature
calibration for Isopora corals on the Great Barrier Reef.
Paleoceanography, 32(2):182–192. https://doi.org/10.1002/2016PA002973
Brenner, L.D., Linsley, B.K., Webster, J.M., Potts,
D., Felis, T., Gagan, M.K., Inoue, M., McGregor, H., Suzuki, A.,
Tudhope, A., Esat, T., Thomas, A., Thompson, W., Fallon, S.,
Humblet, M., Tiwari, M., and Yokoyama, Y., 2020. Coral record of
Younger Dryas chronozone warmth on the Great Barrier Reef.
Paleoceanography and Paleoclimatology, 35(12):e2020PA003962.
https://doi.org/10.1029/2020PA003962
Bridge, T.C.L., Fabricius, K.E., Bongaerts, P.,
Wallace, C.C., Muir, P.R., Done, T.J., and Webster, J.M., 2012.
Diversity of Scleractinia and Octocorallia in the mesophotic zone
of the Great Barrier Reef, Australia. Coral Reefs, 31(1):179–189.
https://doi.org/10.1007/s00338-011-0828-1
Camoin, G., and Webster, J., 2014. Coral reefs and
sea-level change. In Stein, R., Blackman, Donna K., Inagaki, Fumio,
and Larsen, Hans-Christian (Eds.), Developments in Marine Geology
(Volume 7): Earth and Life Processes Discovered from Subseafloor
Environments: A Decade of Science Achieved by the Integrated Ocean
Drilling Program (IODP). R. Stein (Series Ed.). New York
(Elsevier), 395–441. https://doi.org/10.1016/B978-0-444-62617-2.00015-3
Camoin, G.F., and Webster, J.M., 2015. Coral reef
response to Quaternary sea-level and environmental changes: state
of the science. Sedimentology, 62(2):401–428. https://doi.org/10.1111/sed.12184
Esat, T.M., Yokoyama, Y., and Webster, J.M., 2022.
Constraining rapid sea level change through radiometric dating of
corals growing over a range in paleowater depths. Quaternary
Science Advances, 7:100053. https://doi.org/10.1016/j.qsa.2022.100053
Exon, N., 2010. Scientific drilling beneath the
oceans solves earthly problems. Australian Journal of Maritime and
Ocean Affairs, 2(2):37–47.
Felis, T., 2020. Extending the instrumental record
of ocean-atmosphere variability into the last interglacial using
tropical corals. Oceanography, 33(2):68–79. https://doi.org/10.5670/oceanog.2020.209
Felis, T., Hinestrosa, G., Köhler, P., and Webster,
J.M., 2022. Role of the deglacial buildup of the Great Barrier Reef
for the global carbon cycle. Geophysical Research Letters,
49(4):e2021GL096495. https://doi.org/10.1029/2021GL096495
Felis, T., McGregor, H.V., Linsley, B.K., Tudhope,
A.W., Gagan, M.K., Suzuki, A., Inoue, M., Thomas, A.L., Esat, T.M.,
Thompson, W.G., Tiwari, M., Potts, D.C., Mudelsee, M., Yokoyama,
Y., and Webster, J.M., 2014. Intensification of the meridional
temperature gradient in the Great Barrier Reef following the Last
Glacial Maximum. Nature Communications, 5:4102. https://doi.org/10.1038/ncomms5102
Fujita, K., Yagioka, N., Nakada, C., Kan, H.,
Miyairi, Y., Yokoyama, Y., and Webster, J.M., 2019. Reef-flat and
back-reef development in the Great Barrier Reef caused by rapid
sea-level fall during the last glacial maximum (30–17 ka). Geology,
48(1):39–43. https://doi.org/10.1130/G46792.1
Gischler, E., Thomas, A.L., Droxler, A.W., Webster,
J.M., Yokoyama, Y., and Schöne, B.R., 2013. Microfacies and
diagenesis of older Pleistocene (pre-last glacial maximum) reef
deposits, Great Barrier Reef, Australia (IODP Expedition 325): a
quantitative approach. Sedimentology, 60(6):1432–1466. https://doi.org/10.1111/sed.12036
Harper, B.B., Puga-Bernabéu, Á., Droxler, A.W.,
Webster, J.M., Gischler, E., Tiwari, M., Lado-Insua, T., Thomas,
A.L., Morgan, S., Jovane, L., and Röhl, U., 2015. Mixed
carbonate-siliciclastic sedimentation along the Great Barrier Reef
upper slope: a challenge to the reciprocal sedimentation model.
Journal of Sedimentary Research, 85(9):1019–1036. https://doi.org/10.2110/jsr.2015.58.1
Hassan, M.B., 2023. Magnetostratigraphic analysis
of ferromanganese (Fe-Mn) deposits [PhD dissertation]. Instituto
Oceanográfico, Sao Paulo, Brazil. https://doi.org/10.11606/T.21.2023.tde-04092023-104243
Hassan, M.B., Tagliaro, G., Harper, B., Droxler,
A.W., Herrero-Bervera, E., Yokoyama, Y., Puga-Bernabéu, Á.,
Webster, J.M., and Jovane, L., 2023. A magnetic and geochemical
approach to the changing sedimentation accumulation on the upper
slope of the great barrier reef, northeastern Australian margin.
Quaternary Science Reviews, 315:108230. https://doi.org/10.1016/j.quascirev.2023.108230
Herrero-Bervera, E., and Jovane, L., 2013. On the
palaeomagnetic and rock magnetic constraints regarding the age of
IODP 325 Hole M0058A. Geological Society Special Publication,
373(1):279–291. https://doi.org/10.1144/SP373.19
Hinestrosa, G., 2015. Shelf-edge reefs of the Great
Barrier Reef, Australia: a time-capsule from the last glaciation
[PhD dissertation]. University of Sydney, Australia. http://hdl.handle.net/2123/12726
Hinestrosa, G., Webster, J.M., and Beaman, R.J.,
2016. Postglacial sediment deposition along a mixed
carbonate-siliciclastic margin: new constraints from the drowned
shelf-edge reefs of the Great Barrier Reef, Australia.
Palaeogeography, Palaeoclimatology, Palaeoecology, 446:168–185.
https://doi.org/10.1016/j.palaeo.2016.01.023
Hinestrosa, G., Webster, J.M., and Beaman, R.J.,
2019. Spatio-temporal patterns in the postglacial flooding of the
Great Barrier Reef shelf, Australia. Continental Shelf Research,
173:13–26. https://doi.org/10.1016/j.csr.2018.12.001
Hinestrosa, G., Webster, J.M., and Beaman, R.J.,
2022. New constraints on the postglacial shallow-water carbonate
accumulation in the Great Barrier Reef. Scientific Reports,
12(1):924. https://doi.org/10.1038/s41598-021-04586-w
Hinestrosa, G., Webster, J.M., and Beaman, R.J.,
2022. Author Correction: new constraints on the postglacial
shallow-water carbonate accumulation in the Great Barrier Reef.
Scientific Reports, 12(1):1993. https://doi.org/10.1038/s41598-022-06337-x
Hinestrosa, G., Webster, J.M., Beaman, R.J., and
Anderson, L.M., 2014. Seismic stratigraphy and development of the
shelf-edge reefs of the Great Barrier Reef, Australia. Marine
Geology, 353:1–20. https://doi.org/10.1016/j.margeo.2014.03.016
Humblet, M., Webster, J.M., Yokoyama, Y., Braga,
J.C., Fujita, K., Iryu, Y., Fallon, S.J., and Thompson, W.G., 2022.
Reef growth history at intermediate to mesophotic depths since the
end of the Last Glacial period along the Great Barrier Reef shelf
edge. Coral Reefs and Sea-Level Change: Quaternary Records and
Modelling, 2022-12:189–214. https://cir.nii.ac.jp/crid/1360298754817259136
Humblet, M., Hongo, C., and Sugihara, K., 2015. An
identification guide to some major Quaternary fossil reef-building
coral genera (Acropora, Isopora, Montipora, and Porites). Island
Arc, 24(1):16–30. https://doi.org/10.1111/iar.12077
Humblet, M., Potts, D.C., Webster, J.M., Braga,
J.-C., Iryu, Y., Yokoyama, Y., Bourillot, R., Séard, C., Droxler,
A.W., Fujita, K., Gischler, E.F., and Kan, H., 2019. Late glacial
to deglacial variation of coralgal assemblages in the Great Barrier
Reef, Australia. Global and Planetary Change, 174:70–91. https://doi.org/10.1016/j.gloplacha.2018.12.014
Humblet, M., and Webster, J.M., 2017. Coral
community changes in the Great Barrier Reef in response to major
environmental changes over glacial-interglacial timescales.
Palaeogeography, Palaeoclimatology, Palaeoecology, 472:216–235.
https://doi.org/10.1016/j.palaeo.2017.02.003
Insua, T.L., Hamel, L., Moran, K., Anderson, L.M.,
Webster, J.M., and Camoin, G.F., 2015. Advanced classification of
carbonate sediments based on physical properties. Sedimentology,
62(2):590–606. https://doi.org/10.1111/sed.12168
Lado Insua, T., 2013. Physical properties of marine
sediments and their application toward climate change studies [PhD
dissertation]. University of Rhode Island, South Kingstown, RI.
https://digitalcommons.uri.edu/oa_diss/47/
Lemley, G.M., 2012. Assessing δ18O in
the coral genus Isopora for reconstructing Indo-Pacific
regional and seasonal climate variability [MS thesis]. State
University New York, Albany, NY. https://www.proquest.com/docview/1040872258
Mills, H.J., Reese, B.K., and St. Peter, C., 2012.
Characterization of microbial population shifts during sample
storage. Frontiers in Microbiology, 3:49. https://doi.org/10.3389/fmicb.2012.00049
Patterson, M.A., Webster, J.M., Hutchings, P.,
Braga, J.-C., Humblet, M., and Yokoyama, Y., 2020. Bioerosion
traces in the Great Barrier Reef over the past 10 to 30 kyr.
Palaeogeography, Palaeoclimatology, Palaeoecology, 542:109503.
https://doi.org/10.1016/j.palaeo.2019.109503
Puga-Bernabéu, Á., Webster, J.M., Beaman, R.J.,
Reimer, P.J., and Renema, W., 2014. Filling the gap: a 60 ky
record of mixed carbonate-siliciclastic turbidite deposition from
the Great Barrier Reef. Marine and Petroleum Geology, 50:40–50.
https://doi.org/10.1016/j.marpetgeo.2013.11.009
Puga-Bernabéu, Á., Webster, J.M., Beaman, R.J.,
Thran, A., López-Cabrera, J., Hinestrosa, G., and Daniell, J.,
2019. Submarine landslides along the mixed siliciclastic-carbonate
margin of the Great Barrier Reef (Offshore Australia). In Ogata,
K., Festa, A., and Pini, G.A. (Eds.), Submarine Landslides:
Subaqueous Mass Transport Deposits from Outcrops to Seismic
Profiles. Geophysical Monograph: 313–337. https://doi.org/10.1002/9781119500513.ch19
Renema, W., Beaman, R.J., and Webster, J.M., 2013.
Mixing of relict and modern tests of larger benthic foraminifera on
the Great Barrier Reef shelf margin. Marine Micropaleontology,
101:68–75. https://doi.org/10.1016/j.marmicro.2013.03.002
Szilagyi, Z., Webster, J.M., Patterson, M.A., Hips,
K., Riding, R., Foley, M., Humblet, M., Yokoyama, Y., Liang, L.,
Gischler, E., Montaggioni, L., Gherardi, D., and Braga, J.C., 2020.
Controls on the spatio-temporal distribution of microbialite crusts
on the Great Barrier Reef over the past 30,000 years. Marine
Geology, 429:106312. https://doi.org/10.1016/j.margeo.2020.106312
Thran, A.C., East, M., Webster, J.M., Salles, T.,
and Petit, C., 2020. The influence of carbonate platforms on the
geomorphological development of a mixed carbonate‐siliciclastic
margin (Great Barrier Reef, Australia). Geochemistry, Geophysics,
Geosystems, 21(4):e2020GC008915. https://doi.org/10.1029/2020GC008915
Webster, J.M., 2017. Great Barrier Reef
Environmental Changes: IODP Expedition 325. In Exon, N., Exploring
the Earth under the Sea: Australian and New Zealand Achievements in
the First Phase of IODP Scientific Ocean Drilling. Acton, Australia
(Australian National University Press), 101–109. http://www.jstor.org/stable/j.ctt1x76gd2.25
Webster, J.M., Beaman, R.J., Bridge, T., Davies,
P.J., Byrne, M., Williams, S., Manning, P., and et al., 2008.
From corals to canyons: the Great Barrier Reef margin. Eos,
Transactions of the American Geophysical Union, 89(24):217–218.
https://doi.org/10.1029/2008EO240002
Webster, J.M., Braga, J.C., Humblet, M., Potts,
D.C., Iryu, Y., Yokoyama, Y., Fujita, K., Bourillot, R., Esat,
T.M., Fallon, S., Thompson, W.G., Thomas, A.L., Kan, H., McGregor,
H.V., Hinestrosa, G., Obrochta, S.P., and Lougheed, B.C., 2018.
Response of the Great Barrier Reef to sea-level and environmental
changes over the past 30,000 years. Nature Geoscience,
11(6):426–432. https://doi.org/10.1038/s41561-018-0127-3
Woodroffe, C.D., and Webster, J.M., 2014. Coral
reefs and sea-level change. Marine Geology, 352:248–267. https://doi.org/10.1016/j.margeo.2013.12.006
Xiao, H., 2014. Sedimentary records and
paleoclimatic evolution of the Great Barrier Reef in Australia
during the past 150,000 years [PhD dissertation]. China University
of Geosciences, Beijing, China. https://cdmd.cnki.com.cn/Article/CDMD-11415-1014249502.htm
Xiao, H., Liao, L., Ji, J., and Jian, H., 2014.
Sedimentary records and paleoclimatic evolution of the Great
Barrier Reef in Australia. Frontiers in Earth Science, 21(2).
https://doi.org/10.13745/j.esf.2014.02.024
Yagioka, N., Nakada, C., Fujita, K., Kan, H.,
Yokoyama, Y., and Webster, J.M., 2019. Depositional environments
beneath the shelf-edge slopes of the Great Barrier Reef, inferred
from foraminiferal assemblages; IODP Expedition 325.
Palaeogeography, Palaeoclimatology, Palaeoecology, 514:386–397.
https://doi.org/10.1016/j.palaeo.2018.10.033
Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas,
A.L., Webster, J.M., Miyairi, Y., Sawada, C., Aze, T., Matsuzaki,
H., Okuno, J., Fallon, S., Braga, J.-C., Humblet, M., Iryu, Y.,
Potts, D.C., Fujita, K., Suzuki, A., and Kan, H., 2018. Rapid
glaciation and a two-step sea level plunge into the Last Glacial
Maximum. Nature, 559(7715):603–607. https://doi.org/10.1038/s41586-018-0335-4
Yokoyama, Y., Lambeck, K., De Deckker, P., Esat,
T.M., Webster, J.M., and Nakada, M., 2022. Towards solving the
missing ice problem and the importance of rigorous model data
comparisons. Nature Communications, 13(1):6261. https://doi.org/10.1038/s41467-022-33952-z
Zhang, G.-L., and Smith-Duque, C., 2014. Seafloor
basalt alteration and chemical change in the ultra thinly
sedimented South Pacific. Geochemistry, Geophysics, Geosystems,
15(7):3066–3080. https://doi.org/10.1002/2013GC005141
Conferences*
American Geophysical Union (AGU) Fall Meeting
2010
Abbey, E.A., Webster, J.M., and Beaman, R.J., 2010.
Submerged shelf edge features on Australia’s Great Barrier Reef and
their response to Quaternary sea-level changes [presented at the
2010 American Geophysical Union Fall Meeting, San Francisco, CA,
13–17 December 2010]. (Abstract PP11E-1475) http://abstractsearch.agu.org/meetings/2010/FM/PP11E-1475.html
Lado-Insua, T., Moran, K., Anderson, L., Webster,
J.M., Morgan, S., Fehr, A., Lofi, J., Lukies, V., Loggia, D., and
the IODP Expedition 325 Scientists, 2010. Are physical properties
able to differentiate glacial and interglacial coral identity?
[presented at the 2010 American Geophysical Union Fall Meeting, San
Francisco, CA, 13–17 December 2010]. (Abstract PP11E-1476) http://abstractsearch.agu.org/meetings/2010/FM/PP11E-1476.html
Lau, J.K., Herrero-Bervera, E., and Jovane, L.,
2010. Geomagnetic excursions recorded from a sediment core from the
Great Barrier Reef, IODP Expedition 325, Australia [presented at
the 2010 American Geophysical Union Fall Meeting, San Francisco,
CA, 13–17 December 2010]. (Abstract GP13A-0765) http://abstractsearch.agu.org/meetings/2010/FM/GP13A-0765.html
Webster, J.M., Yokoyama, Y., Cotterill, C., and the
Expedition 325 Scientists, 2010. First results from IODP Expedition
325 to the Great Barrier Reef: unlocking climate and sea level
secrets since the Last Glacial Maximum [presented at the 2010
American Geophysical Union Fall Meeting, San Francisco, CA, 13–17
December 2010]. (Abstract PP13F-07) http://abstractsearch.agu.org/meetings/2010/FM/PP13F-07.html
AGU Fall Meeting 2011
Lau, J.K., Herrero-Bervera, E., and Jovane, L.,
2011. Paleomagnetic and environmental magnetic record from a
sediment core from the Great Barrier Reef, IODP Expedition 325,
Australia [presented at the 2011 American Geophysical Union Fall
Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract
GP51A-1149) http://abstractsearch.agu.org/meetings/2011/FM/GP51A-1149.html
Lemley, G.M., Linsley, B.K., Potts, D.C., and Howe,
S.S., 2011. Assessing oxygen isotope variability and Sr/Ca ratios
in the non-massive coral genus Isopora as
a paleoclimate archive [presented at the 2011 American Geophysical
Union Fall Meeting, San Francisco, CA, 5–9 December 2011].
(Abstract PP51D-1891) http://abstractsearch.agu.org/meetings/2011/FM/PP51D-1891.html
Mills, H.J., Reese, B.K., St. Peter, C., Shepard,
A., and the IODP Expedition 325 Science Party, 2011. Exploring how
to characterize the subsurface biosphere by drilling beneath the
Great Barrier Reef [presented at the 2011 American Geophysical
Union Fall Meeting, San Francisco, CA, 5–9 December 2011].
(Abstract B51K-0560) http://abstractsearch.agu.org/meetings/2011/FM/B51K-0560.html
Reese, B.K., Shepard, A., St. Peter, C., and Mills,
H.J., 2011. Biogeography of metabolically active microbial
populations within the subseafloor biosphere [presented at the 2011
American Geophysical Union Fall Meeting, San Francisco, CA, 5–9
December 2011]. (Abstract B51K-0561) http://abstractsearch.agu.org/meetings/2011/FM/B51K-0561.html
Thomas, A.L., Esat, T.M., Thompson, W.G., Yokoyama,
Y., Webster, J.M., and the Expedition 325 Scientists, 2011. The
prospects for a new sea level record from the Great Barrier Reef:
early findings of IODP Expedition 325 “Great Barrier Reef
Environmental Changes” [presented at the 2011 American Geophysical
Union Fall Meeting, San Francisco, CA, 5–9 December 2011].
(Abstract GC54B-08) http://abstractsearch.agu.org/meetings/2011/FM/GC54B-08.html
AGU Fall Meeting 2012
Harper, B., Bernabéu, A., Droxler, A.W., Webster,
J.M., Thomas, A.L., Tiwari, M., Gischler, E., Jovane, L., Morgan,
S., and Lado-Insua, T., 2012. Fore reef upper slope mixed
sedimentation response to penultimate glacial interglacial sea
level fluctuations: IODP Hole 325-M0058A, Great Barrier Reef,
Australia [presented at the 2012 American Geophysical Union Fall
Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS43F-06)
http://abstractsearch.agu.org/meetings/2012/FM/OS43F-06.html
AGU Fall Meeting 2013
Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas,
A.L., Webster, J.M., Miyairi, Y,. Matsuzaki, H., Okuno, J., Fallon,
S.J., Braga, J., Humblet, M., Iryu, Y., and Potts, D.C., 2013. Sea
level record obtained from submerged the Great Barrier Reef coral
reefs [presented at the American Geophysical Union Fall 2013
Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract
PP51D-06) http://abstractsearch.agu.org/meetings/2013/FM/PP51D-06.html
AGU Fall Meeting 2014
Brenner, L.D., Linsley, B.K., and Potts, D.C.,
2014. A modern Sr/Ca-d18O-sea surface temperature calibration for
Isopora corals in the Great Barrier Reef
[presented at the 2014 American Geophysical Union Fall Meeting, San
Francisco, CA, 15–19 December 2014]. (Abstract PP42A-07) http://abstractsearch.agu.org/meetings/2014/FM/PP42A-07.html
AGU Fall Meeting 2016
Brenner, L.D., Linsley, B.K., Potts, D.C., Felis,
T., Mcgregor, H.V., Gagan, M.K., Inoue, M., Tudhope, A.W., Esat,
T.M., Thompson, W.G., Tiwari, M., Fallon, S., Humblet, M.,
Yokoyama, Y., and Webster, J., 2016. Development and application of
Sr/Ca-18O–sea surface
temperature calibrations for Last Glacial Maximum–aged Isopora corals in the Great Barrier Reef [presented
at the 2016 American Geophysical Union Fall Meeting, San Francisco,
California, 11–15 December 2016]. (Abstract PP51D-2331) http://abstractsearch.agu.org/meetings/2016/FM/PP51D-2331.html
European Geosciences Union (EGU) General
Assembly 2015
Felis, T., McGregor, H.V., Linsley, B.K., Tudhope,
A.W., Gagan, M.K., Suzuki, A., Inoue, M., Thomas, A.L., Esat, T.M.,
Thompson, W.G., Tiwari, M., Potts, D.C., Mudelsee, M., Yokoyama,
Y., and Webster, J.M., 2015. Intensification of the meridional
temperature gradient in the Great Barrier Reef following the Last
Glacial Maximum—results from IODP Expedition 325. Geophysical Research Abstracts, 17:EGU2015-10089.
http://meetingorganizer.copernicus.org/EGU2015/EGU2015-10089.pdf
International Coral Reef Symposium 2012
Herrero-Bervera, E., and Jovane, L., 2012.
Paleomagnetism and rock magnetism of IODP 325 Hole M0058A.
Proc. 12th Int. Coral Reef Symp.
http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_1B_2.pdf
*The Expedition-related
bibliography is continually updated online. Please send updates to
PubCrd@iodp.tamu.edu.
|